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Multiphoton microscopy (MPM) combined with fluorescence lifetime imaging microscopy (FLIM) has enabled
three-dimensional quantitative molecular microscopy in vivo. The signal-to-noise ratio (SNR), and thus the im-
aging rate of MPM-FLIM, which is fundamentally limited by the shot noise and fluorescence saturation, has not
been quantitatively studied yet. In this paper, we investigate the SNR performance of the frequency-domain (FD)
MPM-FLIM with two figures of merit: the photon economy in the limit of shot noise, and the normalized SNR in
the limit of saturation. The theoretical results and Monte Carlo simulations find that two-photon FD-FLIM
requires 50% fewer photons to achieve the same SNR as conventional one-photon FLIM. We also analytically
show that the MPM-FD-FLIM can exploit the DC and higher harmonic components generated by nonlinear
optical mixing of the excitation light to improve SNR, reducing the required number of photons by an additional
50%. Finally, the effect of fluorophore saturation on the experimental SNR performance is discussed. © 2016

Optical Society of America

OCIS codes: (180.4315) Nonlinear microscopy; (190.4180) Multiphoton processes; (170.2520) Fluorescence microscopy;

(170.3650) Lifetime-based sensing.
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1. INTRODUCTION

Multiphoton microscopy (MPM) is a widely used in vivo im-
aging technique in biological and medical applications [1–7].
In the case of two-photon excitation (2PE) fluorescence micros-
copy, two excitation photons excite a fluorophore, which in
turn emits a single higher-energy photon [1]. The rate of 2PE
depends quadratically on the excitation intensity, thus enabling
the axial localization of excitation in the vicinity of the focal
plane [8]. The 2PE generally uses near-infrared excitation,
which experiences less scattering in tissue than shorter-
wavelength light and does not cause background autofluores-
cence. Therefore, out-of-focus fluorescence is avoided, and the
overall photobleaching and phototoxicity in thick samples are
reduced [9–14].

Fluorescence lifetime imaging microscopy (FLIM) is also a
powerful tool in biological, chemical, and medical studies: it
provides an additional contrast in optical microscopy by meas-
uring the fluorescence decay lifetime of excited fluorophores
[15–20]. For example, FLIM can be employed to image local
Ca2� or K� ion concentrations, dissolved oxygen concentra-
tions, pH, refractive index, or the occurrence of fluorescence
resonance energy transfer [19,21,22]. Compared with fluores-
cence emission intensity microscopy, FLIM has the advantage

of significantly reduced sensitivity to errors caused by non-
uniform optical absorption, scattering, photobleaching, fluctu-
ations in fluorophore concentration, and drift in detector
sensitivity and excitation power [23–25]. The variety of imag-
ing methods developed to extract fluorophore lifetime from a
sample can be divided into two categories: time-domain (TD)
and frequency-domain (FD) techniques. TD methods, such
as time-correlated single photon counting, time-gating, and
analog mean delay, obtain the lifetime information by exciting
the sample with short optical pulses and measuring the tempo-
ral distribution of emission fluorescence [17,21,26,27]. FD
methods, on the other hand, rely on the relative delay of peri-
odic intensity-modulated excitation light to obtain lifetime
images. FD methods are often preferred because of their rela-
tively rapid acquisition speed and simpler electronics, while
eliminating the requirement for the short pulses needed in TD
methods [23,28].

The MPM and FLIM techniques can be combined into an
integrated imaging system that possesses not only the advan-
tages of MPM, such as high signal-to-noise ratio (SNR) and
large imaging depth, but also the strengths of FLIM, including
error tolerance and the ability to discriminate different fluoro-
phores with similar emission spectra. FLIM and MPM have
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been employed to produce in vivo lifetime images with high
spatial and temporal resolutions [29,30], high pixel rates [31],
and large depth penetration [32].

The SNRs of MPM and FLIM are each fundamentally
limited by photon quantum noise or shot noise [16,33].
This noise comes from the intrinsic nature of the photon emis-
sion and cannot be eliminated from the measurement system
[24]. Other noise sources, such as electronic noise and multi-
plicative noise in photomultipliers, will influence the imaging
results as well, but their influences are negligible compared to
shot noise or can be eliminated with digital acquisition [34,35].
While the SNR can be improved by increasing the number
of detected photons [27], technical limitations arise due to
the excessive acquisition time, increased photobleaching, and
blurred images due to sample movement [23,36].

When comparing FLIM techniques, the photon economy,
or the F -value, is a widely used figure of merit to compare
SNRs [18]. It is described as the normalized RMS noise in life-
time acquisition where the normalization is based on an ideal
photon quantum noise-limited intensity measurement [23,33].
Higher F -values indicate noisier lifetime acquisitions and hence
poorer SNR performances. The best theoretically achievable
F -value is 1, where the lifetime measurement itself is limited
by the photon quantum noise. FLIM techniques with a poor
photon economy require a higher (F 2-fold) number of photons
than an ideal efficient system (F � 1) to achieve the same
uncertainty level in lifetime imaging, which means that longer
acquisition times are needed for these techniques [37]. Though
many research efforts have been conducted to investigate
the F -value for the conventional single photon FLIM
[23,24,33,37], the SNR performance of MPM-FLIM has
not been quantitatively studied yet. In this paper, we discuss
the SNR figures of merit of MPM-FD-FLIM for various exci-
tation techniques with analytical derivations and Monte Carlo
simulations. In Section 4, we find that MPM-FLIM requires
50% fewer photons to achieve the same efficiency as conven-
tional one-photon microscopy.

FLIM SNR is a function of both excitation waveform as well
as lock-in detection techniques [36]. The imaging systems dis-
cussed in this paper only use lock-in detection, which generally
shows better photon economy over other FD-FLIM detection
techniques such as image intensifiers [23,35]. Generally, the
lock-in amplifier is tuned solely to the fundamental excitation
modulation. In this paper, we show that the DC or higher
harmonics of the fluorescent light can also be used for lifetime
imaging. Although it has been previously shown that exploiting
higher harmonics to measure lifetime results in extremely high
F -values, and thus a very poor SNR performance [33,37], we
show in Section 5 that exploiting the DC signal with lock-
in detection of FD-FLIM can further reduce the number of
photons needed in FLIM by an additional 50%.

Finally, in Section 6, we investigate SNR under a practical
situation where 2PE microscopes operate at as high of an ex-
citation rate as possible to achieve maximum SNR while avoid-
ing saturation, for saturation could complicate the excited-state
dynamics and alter the measured lifetime. We conclude this
paper with a guideline for experimentalists using MPM-
FD-FLIM.

2. SYSTEM MODELING

The MPM-FD-FLIM system will be modeled similar to the
method described in Ref. [23], where time variables are scaled
to be dimensionless to simplify the analysis. Unscaled time
variables are presented with an asterisk �, including the time
t�, average fluorescence lifetime τ�, and modulation period
T � � 2π∕ω. After scaling, these time variables become t, τ,
and T , respectively. The scaling relations are t � ωt�,
τ � ωτ�, and T � 2π.

The setup of this imaging system can be modeled as follows.
A mode-locked laser is used as the excitation source. An electro-
optical modulator (EOM) is used to intensity modulate the
light, generating the modulated exciting light e�t�. The modu-
lation waveforms for the EOM are controlled by an arbitrary
function generator. The sample is then excited by e�t� and gen-
erates 2PE fluorescence p�t�. With the strict quadratic depend-
ence on excitation light [8,13,25], the two-photon fluorescence
p�t� is the convolution of e2�t� and f �t�, where

f �t� � 1

τ
exp

�
−
t
τ

�
; t ≥ 0; (1)

is the impulse response of the unsaturated fluorophore, which is
normalized such that its integral on the time domain t ≥ 0 is
unity. We define the effective excitation light as ε�t� � e2�t�,
which will be used in the following analysis.

The effective excitation light is periodic; therefore, it can be
expanded into a Fourier series as follows:

ε�t� � e2�t� �
X�∞

k�−∞
ak exp�ikt�

ak �
1

2π

Z
2π

0

ε�t� exp�−ikt�dt; k � 0;�1;�2;…; (2)

where ak are the corresponding Fourier coefficients. Being peri-
odic as well, the fluorescence light and its Fourier coefficients
are given by

p�t� � ε�t� � f �t� �
X�∞

k�−∞
dk exp�ikt�

dk � ak
1

1� ikτ
; k � 0;�1;�2;…; (3)

where the Convolution Theorem is used to find dk.
The frequency components of the detected signal p�t� are

extracted by lock-in detection or Fourier analysis. These com-
ponents contain the information about τ. Since the collected
signal is real, the analysis is simplified by limiting the frequency
domain to non-negative frequencies. For the nth harmonic
component, i.e., lock-in frequency nω, the corresponding com-
plex Fourier coefficient is

dn �
1

2π

Z
2π

0

p�t� exp�−int�dt; n � 0; 1; 2;…: (4)

Its real and imaginary parts, corresponding to the Fourier
cosine transform (G) and Fourier sine transform (S), respec-
tively, are
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(
Gn � Refdng � 1

2π

R
2π
0 p�t� cos�nt�dt;

Sn � Imfdng � − 1
2π

R
2π
0 p�t� sin�nt�dt; n � 0; 1; 2;….

(5)

With Eq. (3), Gn and Sn can be related to an by(
Gn � Refang 1

1�n2τ2 � Imfang nτ
1�n2τ2 ;

Sn � Refang −nτ
1�n2τ2 � Imfang 1

1�n2τ2 ;
n � 0; 1; 2;….

(6)

By solving Eq. (6), one can obtain τ. However, solving
Eq. (6) would be a laborious task if both Refang and
Imfang are non-zero. So in order to calculate τ efficiently,
an should be either purely real or purely imaginary. When
an is real, τ � −�1∕n��Sn∕Gn�, and when an is imaginary,
τ � �1∕n��Gn∕Sn�. Therefore, lifetime τ can be obtained not
only from the fundamental component (lock-in frequency ω),
but also from the combination of the other nth-order harmon-
ics generated by non-linear mixing, since all of them, except the
DC, contain the information about τ.

3. FIGURES OF MERIT

The photon economy (F -value) is a widely used figure of merit
for comparing the SNR of FLIM systems. In this paper, we
will describe systems in terms of the photon economy as well
as present a new figure of merit based on the saturation-
normalized SNR to compare the FLIM performance when
it is limited by fluorescence saturation, as is common in long-
lifetime (phosphorescent) systems.

A. Photon Economy

The photon economy (F -value) is defined as the ratio of the un-
certainty in lifetime (τ) acquisition to the one in intensity (I ) mea-
surement, with the same amount of detected photons [18].
F � �στ∕τ�∕�σI∕I�, where στ and σI are the standard deviations
of the experimentally measured lifetime and intensity, respectively.
If we denote the intensity I as N det, the number of photons de-
tected in a measurement, which is Poisson distributed [23], then
the standard deviation σI is

ffiffiffiffiffiffiffiffiffi
N det

p
. Therefore, the F -value is

F �
ffiffiffiffiffiffiffiffiffi
N det

p στ
τ
: (7)

F now quantifies the sensitivity of the lifetime acquisition
approach. F is limited to F > 1 due to shot noise; F � 1 in
an ideal shot-noise-limited FLIM system. The F -value can also
be considered as the ratio between the ideal photon quantum
noise-limited SNR (

ffiffiffiffiffiffiffiffiffi
N det

p
) and the measurement SNR (τ∕στ)

[24]. F 2 represents the relative number of photons required
(e.g., the decrease in the measurement rate) compared to an ideal
photon quantum noise-limited case [33] for a desired SNR.

B. Saturation Normalized Signal-to-Noise Ratio

The fluorescent lifetime SNR is expressed as

τ

στ
�

ffiffiffiffiffiffiffiffiffi
N det

p

F
�

ffiffiffiffiffiffiffiffiffiffi
TmR

p

F
; (8)

where R is the photon generation rate and Tm is the total
measurement time. However, R is fundamentally limited

by the fluorescence saturation, which in turn is limited by the
fluorescence lifetime. Since R and F are the fundamental limits
and properties of a lifetime measurement system while Tm is
arbitrary, a straightforward figure of merit for comparing a
saturation-limited FLIM system can be given by:

SNR �
ffiffiffi
R

p

F
�

ffiffiffiffiffiffiffiffiffi
N det

p

F
ffiffiffiffiffiffiffi
Tm

p : (9)

This is similar to the approach of another figure of merit,
relative throughput, as introduced in Ref. [37] to account
for not only the efficiency, but also the acquisition speed of a
microscope.

4. EXCITATION SIGNAL-TO-NOISE RATIO
ANALYSIS

In this section, FLIM figures of merit are calculated for various
excitation waveforms via analytical calculation and numerical
Monte Carlo simulations. In this first analysis of excitation
waveforms, we limit the analysis to the fundamental harmonic
component, i.e., 1ω.

Theoretically, we use an error-propagation method intro-
duced in Ref. [23], which applies if the lifetime τ can be written
in the following form:

τ � U
V

� μ1 � σ1Y 1

μ2 � σ2Y 2

; (10)

where U and V are random variables, Y 1 and Y 2 are auxiliary
random variables with zero mean and unity variance, μ1 and μ2
are the means; and σ1 and σ2 are the standard deviations of U
and V , respectively. In practice, σ21 ≈ E �U 2	 and σ22 ≈ E �V 2	.
Now denote the coefficients of variation as δ1 � σ1∕μ1 and
δ2 � σ2∕μ2, and assume that the absolute value of δ2 is smaller
than one. Equation (10) is expanded as

τ � μ1
μ2

�1� δ1Y 1 − δ2Y 2 − δ1δ2Y 1Y 2 � δ22Y
2
2 �…�: (11)

Unless otherwise specified, we omit the moments of order
larger than 2 in the following analysis, for their contribution
to the final results is small [36]. Therefore, we get the expected
value of τ as

E �τ	 � μ1
μ2

�1 − ρδ1δ2 � δ22�; (12)

where ρ � E �Y 1Y 2	 is the correlation coefficient of U and V .
From Eq. (11), we also have

E �τ2	 �
�
μ1
μ2

�
2

�1� δ21 � 3δ22 − 4ρδ1δ2�: (13)

Consequently, the variance of τ is

σ2τ � E �τ2	 − E �τ	2 �
�
μ1
μ2

�
2

�δ21 � δ22 − 2ρδ1δ2�: (14)

The theoretical figures of merit can then be calculated using
Eqs. (7) and (9).

Additionally, we use Monte Carlo simulations to verify the
analytical results. The Monte Carlo simulations are done by
dividing each modulation period (T � 2π) into M time units
Δt � 2π∕M [23,33,35]. The number M is sufficiently large
(here, M � 30000) to keep the probability of several photons
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emitting in a time unit small, thus ignoring the piling-up effect
[38]. In each unit, a uniformly distributed random number
between 0 and 1 is generated and compared with the proba-
bility density described by the product of the fluorescent light
intensity p�t� in Eq. (3) and the time unit Δt. If the generated
random number is smaller than p�t�Δt, it will be regarded as a
fluorescent photon having been emitted. Then, the detector will
cumulatively record the detected photons and extract the lifetime
information in each measurement (i.e., Nmod periods, here,
Nmod � 2400) based on the lock-in technique in use. The mea-
surement process is repeated 1000 times to generate a set of out-
put values, including the acquired lifetime τ and the total
number of detected photons N det. Following this, a statistical
analysis is performed to find the means and variances of these
outputs, and the figures of merit are obtained accordingly.

A. Square Root of Sinusoid

First, we observe the performance of a modulation waveform
of the square root of a sinusoidal function. After the 2PE fluo-
rescence process, the effective excitation light has a waveform of
a sinusoidal function. In this way, the two-photon fluorescent
emission that the fluorophore in the sample experiences is
equivalent to a one-photon process with a sinusoidally modu-
lated excitation light, which has been studied in Ref. [23]. The
resulting performances of these two processes are expected to be
the same and thus can be used to compare to linear excitation.
The illumination light is

e�t� � 1ffiffiffiffiffi
2π

p �1� m sin�t�	12; (15)

where m is the degree of modulation, 0 < m ≤ 1. With the
2PE process, the effective exciting light is

ε�t� � 1

2π
�1� m sin�t�	; (16)

which has the first harmonic Fourier coefficient

a1 � −
m
4π

i: (17)

Correspondingly, the fluorescence p�t� has the first harmonics

G1 � −
m
4π

τ

1� τ2
; S1 � −

m
4π

1

1� τ2
: (18)

Therefore, the lifetime can be acquired from τ � G1∕S1.
Equations (15) and (16) have been normalized to guarantee
that the integral of the fluorescence in a modulation period
is unified, Z

2π

0

p�t�dt � 1: (19)

Thus, on average, only one photon is emitted in every period;
i.e., the 2PE emission rate is assumed to be constant. This
assumption is feasible because the problem under investigation
is a scaled one; it can be recovered to realistic situations once the
modulation frequency ω is included.

p�t� can be regarded as the probability density function of
detecting a photon. For a random variable X in the detector, if
its realization is based on detecting a photon, then its expected
value in a modulation period, or for each emitting photon, is

E �X 	 �
Z

2π

0

X p�t�dt: (20)

In each measurement, N det photons are detected. Therefore,
the expected value for X in one measurement is N detE �X 	.
Denote the random processes corresponding to G1 and S1 in
the lock-in detector as XG1 and X S1, respectively. Then, for the
square root of sinusoidal modulation, the expected value of the
acquired lifetime τ is

τ � N detE �XG1	
N detE �X S1	

: (21)

With the definition of Fourier transforms and from Eq. (5), we
know that

XG1 � cos�t�; X S1 � − sin�t�: (22)

So, the expected values for them are

E �XG1	 �
Z

2π

0

p�t� cos�t�dt � 2πG1; (23)

E �X S1	 � −

Z
2π

0

p�t� sin�t�dt � 2πS1: (24)

Based on Eqs. (10)–(14), in this case, we have U � G1,
V � S1, and

μ1 � E �U 	 � N detE �XG1	 � −N det

m
2

τ

1� τ2
;

μ2 � E �V 	 � N detE �X S1	 � −N det

m
2

1

1� τ2
: (25)

The variances and the correlation coefficient are

σ21 � E �U 2	 � N detE �X 2
G1	;

σ22 � E �V 2	 � N detE �X 2
S1	;

ρσ1σ2 � E �UV 	 � N detE �XG1X S1	; (26)

where, from Eq. (5),

E �X 2
G1	 � E �cos2�t�	 � 1

2
�1� 2πG2�; (27)

E �X 2
S1	 � E �sin2�t�	 � 1

2
�1 − 2πG2�; (28)

E �XG1X S1	 � E �− cos�t� sin�t�	 � 1

2
2πS2: (29)

Since a2 of the effective exciting light [Eq. (16)] is 0, G2 � 0,
S2 � 0 from Eq. (6). Therefore,

σ21 �
1

2
N det; σ22 �

1

2
N det; ρσ1σ2 � 0: (30)

From Eq. (14), we obtain the standard deviation of the
lifetime,

στ �
ffiffiffiffiffiffiffiffiffi
2

N det

s
�1� τ2�32

m
: (31)

Consequently, the F -value is

F �
ffiffiffiffiffiffiffiffiffi
N det

p στ
τ
�

ffiffiffi
2

p �1� τ2�32
mτ

: (32)
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The normalized SNR, from Eq. (9), is

SNR �
ffiffiffiffiffiffiffiffiffi
N det

p
F

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πNmod

p �
ffiffiffiffiffiffiffiffiffiffiffi
N det

Nmod

s
1

F
ffiffiffiffiffi
2π

p ; (33)

where Nmod is the number of modulation periods in a measure-
ment. Since in this analysis, each period, on average, emits one
photon, N det � Nmod, then

SNR � 1

F
ffiffiffiffiffi
2π

p : (34)

The theoretical results in Eq. (32) are plotted as curves, with
the variance of the degree of modulation m, in Fig. 1, where the
corresponding Monte Carlo simulation results are also plotted
as dots. Figure 1 shows the agreement between the theoretical
derivations and Monte Carlo simulations. All these F -values are
plotted as a function of the modulation frequency, which has a
unit of 1∕τ�, essentially, Hz. As can be read from the figure, the
best F -value is F � 3.67, corresponding to SNR � 0.11 for
m � 1 at the frequency of 0.11∕τ�. This result is in accordance
with expectation, as it is the same with the F -value reported in
Ref. [23] for the sinusoidally modulated one-photon process.
Also, as the degree of modulation m goes down, the figures
of merit get worse. This calls for a high degree of modulation
for the exciting light in real experiments.

B. Sinusoid

A sinusoidally modulated exciting light is common in use and
easy to produce. With the same normalization criterion for p�t�
in Eq. (19), the illumination and the corresponding effective
excitation light signals are

e�t� � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π�m2 � 2�

p �1� m sin�t�	; (35)

ε�t�� 1

2π�m2�2��m
2�2�4m sin�t�−m2 cos�2t�	; (36)

where m is the degree of modulation 0 < m ≤ 1. The first har-
monic Fourier coefficient of ε�t� is

a1 � −
m

π�m2 � 2� i: (37)

Then, from Eq. (6), we have

G1 � −
m

π�m2 � 2�
τ

1� τ2
; S1 � −

m
π�m2 � 2�

1

1� τ2
:

(38)

Consequently, the lifetime is also obtained by τ � G1∕S1,
which shares the same form with Eq. (10). The derivation is
the same with Eqs. (10)–(14), where we have U � G1,
V � S1, and with Eqs. (22)–(24),

μ1 � E �U 	 � N detE �XG1	 � −N det

2m
m2 � 2

τ

1� τ2
;

μ2 � E �V 	 � N detE �X S1	 � −N det

2m
m2 � 2

1

1� τ2
: (39)

Equations (27)–(29) require the knowledge of the second har-
monic Fourier coefficients, which are

a2 � −
m2

4π�m2 � 2� ;

G2 � −
m2

4π�m2 � 2�
1

1� 4τ2
; S2 �

m2

4π�m2 � 2�
2τ

1� 4τ2
:

(40)

Therefore, the second moments are

σ21�E �U 2	�N detE �X 2
G1	�N det

�
1

2
−

m2

4�m2�2�
1

1�4τ2

�
;

σ22�E �V 2	�N detE �X 2
S1	�N det

�
1

2
� m2

4�m2�2�
1

1�4τ2

�
;

ρσ1σ2�E �UV 	�N detE �XG1X S1	�N det

m2

4�m2�2�
2τ

1�4τ2
:

(41)

Then, from Eq. (14), the standard deviation of τ is obtained,

στ �
1� τ2

4m

�
1

N det

m2 � 2

1� 4τ2

�1
2

× �4� m2 � 7m2τ2 � 20τ2 � 8 m2τ4 � 16τ4�12: (42)

So the F -value is

F � 1� τ2

4mτ

�
m2 � 2

1� 4τ2

�1
2

× �4� m2 � 7m2τ2 � 20τ2 � 8 m2τ4 � 16τ4�12; (43)

and the normalized SNR has the same form as Eq. (34). The
derived and Monte Carlo simulated F -values are plotted in
Fig. 2. The best figures of merit are F � 2.62, SNR � 0.15
for m � 1 at the frequency of 0.11∕τ�. And the figures of
merit are getting worse as the degree of modulation goes down.
Therefore, a high degree of modulation is also required in
this case.

C. Periodic Square Wave and Dirac Comb

Excitation by a periodic square wave, or ideally a Dirac comb
when the duty cycle is zero, though it requires a large system
bandwidth, is preferable in FLIM. The same normalization for

Fig. 1. F -value as a function of the modulation frequency with the
first harmonic frequency (1ω) lock-in detection for square-root sinus-
oidally modulated excitation light.
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p�t� in Eq. (19) results in the excitation and the effective
excitation light signals as

e�t��
X∞
k�−∞

1ffiffiffiffiffiffiffiffi
2πa

p �θ�t −2πk�πa�−θ�t −2πk−πa�	; (44)

ε�t� �
X∞
k�−∞

1

2πa
�θ�t − 2πk � πa� − θ�t − 2πk − πa�	; (45)

where a is the duty cycle 0 ≤ a ≤ 1, and θ�·� is the unit step
function. The first harmonic Fourier coefficient of ε�t� is

a1 �
1

2π

sin�πa�
πa

; (46)

and with Eq. (6),

G1 �
1

2π

sin�πa�
πa

1

1� τ2
; S1 � −

1

2π

sin�πa�
πa

τ

1� τ2
:

(47)

So the lifetime can be extracted by τ � −S1∕G1. With the same
derivations as Eqs. (10)–(14), we have U � −S1, V � G1.
Equations (22)–(24) still hold, but since U and V have
changed, we get

μ1 � E �U 	 � −N detE �X S1	 � N det

sin�πa�
πa

τ

1� τ2
;

μ2 � E �V 	 � N detE �XG1	 � N det

sin�πa�
πa

1

1� τ2
: (48)

The second harmonic Fourier coefficients are

a2 �
1

2π

sin�2πa�
2πa

; G2 �
1

2π

sin�2πa�
2πa

1

1� 4τ2
;

S2 � −
1

2π

sin�2πa�
2πa

2τ

1� 4τ2
;

(49)

giving the second moments, according to Eqs. (27)–(29), as

σ21�E �U 2	�N detE �X 2
S1	�N det

�
1

2
−
sin�2πa�
4πa

1

1�4τ2

�
;

σ22�E �V 2	�N detE �X 2
G1	�N det

�
1

2
� sin�2πa�

4πa
1

1�4τ2

�
;

ρσ1σ2�E �UV 	�N detf−E �XG1X S1	g�N det

sin�2πa�
4πa

2τ

1�4τ2
:

(50)

Then, from Eq. (14), we get the standard deviation of the life-
time,

στ �
1� τ2

2 sin�πa�

�
1

N det

πa
1� 4τ2

�1
2

× �2πa − sin�2πa� � 10πaτ2 − 3 sin�2πa�τ2 � 8πaτ4�12:
(51)

Consequently, the F -value is calculated as

F � 1� τ2

2τ sin�πa�

�
πa

1� 4τ2

�1
2

× �2πa − sin�2πa� � 10πaτ2 − 3 sin�2πa�τ2 � 8πaτ4�12:
(52)

By letting a → 0, the F -value of a Dirac comb modulation can
be directly obtained as

F � �1� τ2�
�
1� 2τ2

1� 4τ2

�1
2

: (53)

For both cases, the normalized SNR can be calculated using
Eq. (34). Figure 3 plots the F -values from these theoretical
derivations and from the Monte Carlo simulations. The best
figures of merit are F � 1.00, SNR � 0.40 for both the
Dirac comb and the periodic square wave with a duty cycle
a � 0.001. These two modulation waveforms have very similar
F -value curves, as the duty cycle of the square wave is so small
that it can be approximately regarded as a Dirac function.
The optimal SNR performance can be achieved as long as

0.1m =

0.5m =
1m =

Fig. 2. F -value as a function of the modulation frequency with
the first harmonic frequency (1ω) lock-in detection for sinusoidally
modulated excitation light.

0.8a =

0.5a =

0.2a =
Dirac

0.001a =

Fig. 3. F -value as a function of the modulation frequency with the
first harmonic frequency (1ω) lock-in detection for periodic square
wave- and Dirac comb-modulated excitation light.
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the frequency is smaller than 0.04∕τ�, which is a band instead
of a single frequency point. It can be seen from Fig. 3 that
square waves with smaller duty cycles produce better F -values
in this case.

D. Comparison

Figure 4 compares the F -values of the aforementioned modu-
lation waveforms. The Dirac comb (or a periodic square wave
with a very small duty cycle) has the best performance in SNR,
while the square root of sinusoidal modulation is the worst.
This phenomenon can be explained by Table 1, where the first
harmonic Fourier coefficients a1 for the effective exciting lights
ε�t� are listed and compared. The larger ja1j is, the better fig-
ures of merit this modulation has. This correlation between ja1j
and the figures of merit is expected, because the detector only
locks in the first harmonic frequency components G1 and S1,
which are directly related to a1 by Eq. (6), to calculate the life-
time. While the noise, or uncertainty, in each modulation form
is the same, the signal strength is stronger for the one with
larger ja1j; therefore, the SNR performance is positively corre-
lated to the magnitude of a1. This analysis can be generalized
to the lock-in of the nth harmonic component. Also from the
comparison, the F -value for sinusoidal modulation withm � 1
is 2.62, which is led by the 2PE process of the fluorophores.
This means that the number of photons needed to acquire a
certain SNR is about 6.9 (≈2.622) times more than that of
an ideal case. On the other hand, F � 3.67 of the correspond-
ing one-photon excitation [23], which is equivalent to the
two-photon square root of sinusoidal modulation here, requires

about 13.5 (≈3.672) times more photons to be collected than
an ideal case. The 50% decrease in the required photon num-
ber shows a potential advantage in the SNR of two-photon
microscopy over the conventional one-photon microscopy.

5. DETECTION SIGNAL-TO-NOISE RATIO
ANALYSIS

The SNR performance of FD-FLIM is also limited by the de-
tector lock-in implementation. In this section, we limit our dis-
cussion to sinusoidally modulated excitation light, for it is easy
to produce and is commonly used to evaluate FD-FLIM [24].

The sinusoidal modulation has been described in Eqs. (35)
and (36). The lock-in techniques can only exploit the DC and
the first and second harmonic Fourier coefficients of ε�t�,

a0 �
1

2π
; a1 � −

m
π�m2 � 2� i; a2 � −

m2

4π�m2 � 2� :

(54)

With Eq. (6), we have

G0 �
1

2π
; S0 � 0;

G1 � −
m

π�m2 � 2�
τ

1� τ2
; S1 � −

m
π�m2 � 2�

1

1� τ2
;

G2 � −
m2

4π�m2 � 2�
1

1� 4τ2
; S2 �

m2

4π�m2 � 2�
2τ

1� 4τ2
:

(55)

The lifetime τ can then be obtained by solving the equations
above. Since these Fourier coefficients provide redundant
knowledge of τ, a variety of combinations among them can
be exploited to get τ.

A. 1ω Lock-In

The lifetime can be extracted by solely measuring G1 and S1,
which means that we only lock in the first harmonic frequency
1ω. Identical to the case discussed in Section 4.B, the lifetime is
obtained with τ � G1∕S1, and the figures of merit are calcu-
lated from Eqs. (43) and (34).

B. 2ω Lock-In

The second harmonic (2ω) components G2 and S2 can also be
used to determine the lifetime:

τ � −
1

2

S2
G2

; (56)

which has the same form as Eq. (10). Therefore, Eqs. (10)–(14)
still apply. Similar to Eqs. (20) and (21), denoting the random
processes corresponding to G2 and S2 in the detector as XG2

and X S2, respectively, the expected value of the acquired life-
time is

τ � −
1

2

N detE �X S2	
N detE �XG2	

: (57)

With the definition of Fourier transforms and from Eq. (5), we
have

XG2 � cos�2t�; X S2 � − sin�2t�; (58)

Table 1. Comparison of Modulation Waveforms

Waveform min F max SNR a1 ja1j
Square root Sin 3.67 0.11 − 1

4π i 0.0796
Sin 2.62 0.15 − 1

3π i 0.1061
Dirac 1.00 0.40 1

2π
0.1592

Fig. 4. F -value as a function of the modulation frequency with the
first harmonic frequency (1ω) lock-in detection for excitation lights
with various modulations.
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and the expected values are

E �XG2	 �
Z

2π

0

p�t� cos�2t�dt � 2πG2; (59)

E �X S2	 � −

Z
2π

0

p�t� sin�2t�dt � 2πS2: (60)

With U � −S2∕2, V � G2, we have

μ1 � E �U 	 � −
1

2
N detE �X S2	 � N det

m2

2�m2 � 2�
τ

1� 4τ2
;

μ2 � E �V 	 � N detE �XG2	 � −N det

m2

2�m2 � 2�
1

1� 4τ2
: (61)

The variances and the correlation coefficient are

σ21 � E �U 2	 � 1

4
N detE �X 2

S2	;
σ22 � E �V 2	 � N detE �X 2

G2	;

ρσ1σ2 � E �UV 	 � −
1

2
N detE �XG2X S2	: (62)

From Eq. (5),

E �X 2
S2	 � E �sin2�2t�	 � 1

2
�1 − 2πG4�; (63)

E �X 2
G2	 � E �cos2�2t�	 � 1

2
�1� 2πG4�; (64)

E �XG2X S2	 � E �− cos�2t� sin�2t�	 � 1

2
2πS4: (65)

With Eq. (54), we know that a4 � 0, and therefore G4 � 0
and S4 � 0. So,

σ21 �
1

8
N det; σ22 �

1

2
N det; ρσ1σ2 � 0: (66)

Then from Eq. (14), the standard deviation of τ can be
calculated,

στ �
ffiffiffiffiffiffiffiffiffiffiffi
1

2N det

s
m2 � 2

m2 �1� 4τ2�32: (67)

Consequently, the F -value is

F � m2 � 2ffiffiffi
2

p
m2

�1� 4τ2�32
τ

; (68)

and the normalized SNR can be obtained with Eq. (34).

C. DC and 1ω Lock-In

The lifetime can also be computed by the combination of DC
(G0) and 1ω (S1) components,

τ �
�
−

2m
m2 � 2

G0

S1
− 1

�1
2

: (69)

In this case, τ is not in the form of Eq. (10), so the aforemen-
tioned analysis in Eqs. (10)–(14) cannot be applied. However,
the uncertainty in τ can still be obtained indirectly, with the
approximate analysis method for a function of a random var-
iable [39].

Generally, for two random variables X and Y with a func-
tional relationship Y � g�X �, if we make two assumptions that
(1) the function g�X � is “relatively smooth” in the region

around the mean value μX of X , and (2) X has a small standard
deviation σX (σX < 1), then Y � g�X � can be Taylor ex-
panded around the mean value μX and yields

Y � g�X �jX�μX
� �X − μX �

dg
dx

����
X�μX

� 1

2!
�X − μX �2

d 2g
dx2

����
X�μX

�…: (70)

Taking the expected value of both sides of this equation,
we get

E �Y 	 � g�μX � �
σ2X
2
g 0 0�μX �; (71)

where the relation E �X − μX 	 � E �X 	 − μX � 0 has been used.
Specifically, in this case,

X � G0

S1
; Y � τ � g�X � �

�
−

2m
m2 � 2

X − 1

�1
2

: (72)

We calculate the mean and standard deviation of X first. Since
X is in the form of Eq. (10), Eqs. (10)–(14) can be applied to
calculate μX and σX and U � G0 and V � S1. Denoting XG0

as the random process corresponding to G0 in the detector, and
from Eq. (5), XG0 � cos�0t� � 1, whose expected value is

E �XG0	 �
Z

2π

0

p�t�dt � 1: (73)

With Eqs. (73) and (24), we have

μ1 � E �U 	 � N detE �XG0	 � N det;

μ2 � E �V 	 � N detE �X S1	 � −N det

2m
m2 � 2

1

1� τ2
: (74)

Then, with Eq. (28), the variances and correlation coefficients
are

σ21�E �U 2	�N detE �X 2
G0	�N det;

σ22�E �V 2	�N detE �X 2
S1	�N det

�
1

2
� m2

4�m2�2�
1

1�4τ2

�
;

ρσ1σ2�E �UV 	�N detE �X S1	�−N det

2m
m2�2

1

1�τ2
: (75)

Therefore, the moments of X can be calculated from Eqs. (12)–
(14),

μX � −
m2 � 2

2m
�1� τ2�

�
1 −

1

N det

� 1

N det

�
m2 � 2

2m

�
2

× �1� τ2�2
�
1

2
� m2

4�m2 � 2�
1

1� 4τ2

�	
; (76)

σ2X � 1

N det

�
m2 � 2

2m

�
2

�1� τ2�2
�
−1�

�
m2 � 2

2m

�
2

× �1� τ2�2
�
1

2
� m2

4�m2 � 2�
1

1� 4τ2

�	
: (77)

From Eq. (72), the second derivative of g�X � yields

g 0 0�X � � −
m2

�m2 � 2�2
�
−

2m
m2 � 2

X − 1

�
−32
: (78)
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Consequently, based on Eq. (71), the mean value of
Y (or τ) is

E �τ	 �
�

−2m
m2 � 2

μX − 1

�1
2

−
m2σ2X

2�m2 � 2�2
�

−2m
m2 � 2

μX − 1

�
−32
:

(79)

We know that the mean square value of τ is

E �τ2	 � E
�
−

2m
m2 � 2

X − 1

�
� −

2m
m2 � 2

μX − 1; (80)

so the standard deviation of the acquired lifetime can be calcu-
lated from

στ � �E �τ2	 − E �τ	2�12; (81)

and accordingly, the figures of merit can be obtained using
Eqs. (7) and (34).

D. Comparison

Figure 5 plots the F -values from the theoretical results in
Sections 5.A–5.C along with the Monte Carlo simulations.
The best figures of merit for 1ω lock-in detection have been
discussed in Section 4.B; these are F � 2.62, SNR � 0.15
at the frequency of 0.11∕τ�. This indicates that the optimal
1ω detection requires 6.9 (≈2.622) times more photons to
achieve the same SNR as the ideal case. For 2ω lock-in, the
SNR performance is much worse, resulting in F � 11.02,
SNR � 0.04 at the frequency of 0.06∕τ�. However, the com-
bination of DC and 1ω lock-in detection shows an improved
figure of merit of F � 1.87, SNR � 0.21 at the frequency of
0.14∕τ�. This means that the DC and 1ω combination only
needs to collect 3.5 (≈1.872) times more photons to achieve the
same SNR level as the ideal case, which corresponds to a 2 ×
improvement in the acquisition rate relative to the traditional
1ω-only lock-in detection method. The combined DC and 1ω
lock-in approach is superior to the single-frequency lock-in
method for modulation frequencies greater than 0.06∕τ�.
This allows for a wide range of high-performance modulation

frequencies, which is important for experimental design and
implementation.

Solving Eq. (55) indicates that lifetime measurements are
possible using DC� 2ω and 1ω� 2ω combinations,

τ � 1

2

�
−

m2

2�m2 � 2�
G0

G2

− 1

�1
2

; for DC and 2ω; (82)

τ �
� m − 4 G2

S1

16 G2

S1
− m

�1
2

; for 1ω and 2ω: (83)

However, the uncertainty in these methods cannot be extracted
from Eqs. (82) and (83) using the analytical methods presented
in this paper, and the Monte Carlo simulations indicate a poor
SNR (Fig. 5).

Since the noise in this system is predominantly determined
by photon quantum noise, the noise spectrum can be assumed
to be white, i.e., independent of the modulation frequency,
up to a limit set by the bandwidths of the detectors and
amplifiers [34,36,40]. To achieve a high SNR, the frequency
components with the largest magnitude should be employed
(regardless of frequency). Although the DC component
has the largest magnitude, it does not contain lifetime informa-
tion. Therefore, the combination of DC and 1ω lock-in will
result in the best SNR. The lock-in techniques exploiting
the weak 2ω signal, on the other hand, will have poor SNR
performance.

6. DISCUSSION OF EXPERIMENTAL
PERFORMANCE

To date, lifetime microscopy performance analysis assumes that
only one 2PE fluorescent photon is emitted in every modula-
tion period, as indicated by the normalization in Eq. (19); i.e.,
the 2PE emission rate is assumed to be an arbitrary constant.
However, the emission rate is limited by the spontaneous emis-
sion rate (i.e., fluorescence saturation), which is independent of
the modulation period. 2PE microscopes typically operate at as
high of an excitation rate as possible while avoiding saturation
to achieve maximum SNR, for saturation could complicate
the excited-state dynamics and alter the measured lifetime.
Therefore, a useful comparison for 2PE FLIM performance
would be in the limit of constant fluorescence emission.

To compare the performance at a constant emission rate,
we renormalize the excitation light to avoid the fluorescence
saturation. Instead of using Eq. (19), we define a maximally
allowed fluorescence intensity Pmax, such that

p�t� ≤ Pmax: (84)

With this new normalization criterion, the excitation light sig-
nal previously described by Eqs. (15), (35), and (44) now
changes to

e�t� �
�

Pmax

1� m

�1
2�1� m sin�t�	12; (85)

e�t� �
�

Pmax

2�1� m�2
�1

2�1� m sin�t�	; (86)
Fig. 5. F -value as a function of the modulation frequency with vari-
ous lock-in detection techniques for sinusoidally modulated excitation
light.
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e�t� �
X∞
k�−∞

�
Pmax

1 − exp


− 2π

τ

�
1 − exp



− 2πa

τ

��1
2

× �θ�t − 2πk � πa� − θ�t − 2πk − πa�	; (87)

respectively. Note that the Dirac comb modulation is not
possible in this normalization, as the saturation limit condition
has negated the infinite intensity of Dirac pulses.

This new normalization criterion does not affect the F -value
described in Eq. (7), which is independent of the fluorescence
intensity; however, the normalized SNR, which was defined
in Eq. (9), will be altered. In Fig. 6, we present theoretically
calculated SNRs of various modulation schemes for the 1ω
lock-in detection (curves) with Monte Carlo simulations (dots),
under two different normalization criteria, Eqs. (19) and (84).
The saturation-limited normalization in Eq. (84) prevents the
emission rate from exceeding the maximally allowed value of
the fluorophores. As can be seen from Fig. 6, the square wave’s

duty cycle a now affects SNR differently. For example, when
not limited by saturation, as in Fig. 6(a), the SNR decreases
with the increasing duty cycle, while in the case of saturation
[Fig. 6(b)], the optimal SNR is found at a � 0.175, rather than
the smallest a (e.g. a � 0.001), as suggested in Section 4.C.

7. CONCLUSION

We have presented analytical and simulated SNR figures
of merit for MPM-FD-FLIM methods. The comparison in
figures of merit between the square root of the sinusoidal and
the sinusoidal modulations theoretically confirms that the
MPM-FD-FLIM has a superior SNR performance compared
to conventional one-photon FD-FLIM, which has not been
previously described theoretically. Our analysis shows that
50% fewer photons are required in MPM-FD-FLIM to achieve
the same SNR as one-photon FD-FLIM.

We have also shown that employing more harmonic com-
ponents allows for an improved SNR compared to conven-
tional single-frequency lock-in detection, as is typically used
in FD-FLIM. For example, the generally discarded DC signal
can not only be used in FLIM, but also greatly improves SNR
performance. The combination of DC and 1ω components in-
creases the lifetime measurement rate by a factor of 2 compared
to traditional fundamental frequency FD-FLIM.

Finally, this work can act as a guideline for experimentalists
using MPM-FD-FLIM. To get the best SNR performance,
periodic square-wave modulation with a small duty cycle
(e.g., a < 0.2) with a frequency of f ≈ 0.1∕τ� is preferred.
As fluorophore saturation is common in MPM, a 0.175 duty
cycle modulated at f ≈ 0.1∕τ� is recommended for the maxi-
mal SNR. Nevertheless, square-wave modulation may be a
problem for systems with limited bandwidth, especially for
those requiring a high modulation frequency. If bandwidth
limitation is indeed a problem, the sinusoidal modulation at
f ≈ 0.1∕τ� detailed in this paper is always recommended
due to its easy implementation and the potential to get an
F -value as low as 1.87 using the combined DC and 1ω
lock-in technique presented in this paper.

In conclusion, we have presented for the first time a theo-
retical framework for MPM-FD-FLIM SNR optimization at
both the source and the detector and the data analysis tech-
niques for improved SNR over the current conventional
methods.
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